提出了一种基于数据驱动的集成电路故障预测与健康管理(PHM)模型,该模型基于反向传播(BP)神经网络算法,避免了对集成电路老化失效物理机理的依赖,能有效拟合集成电路失效的非线性函数关系。以已编程应用设计的FPGA为目标器件,通过实验提取参数样本进行模型训练,并将模型应用于实测验证。结果表明,该模型输出结果与实测结果吻合良好,能有效满足集成电路故障预测与健康管理的实际应用。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !