×

针对成本控制下的影响最大化算法

消耗积分:1 | 格式:rar | 大小:0.86 MB | 2017-12-06

分享资料个

  针对成本控制下影响最大化时间复杂度高的问题,提出一种快速的最大化算法BCIM。首先提出对初始节点进行多次传播的传播模型;其次选择高影响力节点作为备用种子,并基于近距离影响减少计算节点影响范围的工作量;最后利用动态规划方法在每组备用种子中最多选择一个种子。仿真实验表明,与随机算法Random、每轮取影响力增量最大的节点的贪心算法Greedy_MII、每轮取影响力增量与成本比值最大的节点的贪心算法Greedy_MICR相比,在影响范围上,BICM接近或优于Greedy_MICR及Greedy_MII,远次于Random;在种子集合的质量上,BCIM、Greedy_MICR、G reedy_MII三者差距较小,但都远远好于Random;在运行时间上,BCIM是Random的几倍,而两个贪心算法都是BCIM的几百倍。BCIM算法能在较短时间内找到更有效的种子集合。

针对成本控制下的影响最大化算法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !