×

最大化AUC关系的PU分类应用及相关算法

消耗积分:0 | 格式:pdf | 大小:4.37 MB | 2021-04-07

分享资料个

  正例未标注分类简称PU分类,由于只有正例样本与未标注样本,传统的分类方法在PU分类中往往效果不甚理想。为此利用PU分类下的AUC与传统分类下的AUC关系,提出了将传统分类方法中AUC作为目标函数应用到PU分类中,利用高斯核函数将原始样本映射到高维空间使数据线性可分。通过优化AUC目标函数得到解析解避免了多次迭代的麻烦,并可以推导岀増量公式,加快了运算速度。实验结果表明,所提算法实现了与训练集内所有正例与负例标签都已知的理想支持向量机(SVM)相近的性能,并且实现了快速増量是处理现实问题的有力工具。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !