针对匿名集内轨迹间的高度相似性而导致的轨迹隐私泄露问题,提出基于轨迹形状多样性的隐私保护算法。该算法通过轨迹同步化处理的方式改进轨迹数据的预处理过程,以减少信息损失;并借鉴Z一多样性思想,在贪婪聚类时选择Z条具有形状多样性的轨迹作为匿名集成员,以防止集合内成员轨迹的形状相似性过高而导致轨迹形状相似性攻击。理论分析及实验结果均表明,该算法能够在保证轨迹K一匿名的同时满足f一多样性,算法运行时间较小,且减少了轨迹信息损失,增强了轨迹数据的可用性,更好地实现了轨迹隐私保护,可有效应用到隐私保护轨迹数据发布中。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !