×

面向差分数据挖掘隐私保护的随机森林算法

消耗积分:0 | 格式:rar | 大小:1.19 MB | 2021-05-12

分享资料个

  数据挖掘中的隐私保护问题是目前信息安全领域的研究热点之一。针对隐私保护要求下的分类问题,提出一种面向差分隐私保护的随机森林算法 REDPP-Gini。将随机森林与差分隐私保护相结合,在隐私信息得到保护的同时提高分类的准确率。以CART分类树作为随机森林中的单棵决策树,使用 Laplace机制和指数机制添加噪声并选择最佳分裂特征。实验结果表明, RFDPP-Gini算法既能处理离散型特征又能处理连续型特征,在 Adult和Mushroom数据集上的分类准确率最高分别达86.335%和100%,且在加入噪声后算法的分类准确率下降幅度极小。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !