入侵检测要求系统能够快速准确地找出网络中的入侵行为,因此对检测算法的效率有较高的要求。针对入侵检测系统效率和准确率偏低,系统的误报率和漏报率偏高的问题,在充分分析C4.5算法和朴素贝叶斯(NB)算法后,提出一种二者相结合的H-C4. 5-NB入侵检测模型。该模型以概率的形式来描述决策类别的分布,并由C4.5和NB概率加权和的形式给出最终的决策结果,最后使用KDD 99数据集测试模型性能。实验结果表明,与传统的C4.5、NB和NBTree方法相比,在H-C4. 5-NB中对拒绝服务(DoS)攻击的分类准确率提高了约9%,对U2R和R2L攻击的准确率提高约20%- 30%。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !