上证综合指数是广大投资者关注的重要指数。上证综合指数不仅反映了我国股票市场的基本状况,同时对我国经济走向也具有重要的导向作用。对上证综合指数的预测分析以及趋势研判对稳定市场、引导投资者具有重大意义。而股票市场数据是典型的非线性系统,传统统计学预测方法在处理时预测精度较低。本文综合运用R软件并结合目前机器学习领域最新的六种方法一一决策树、boosting、bagging、随机森林、支持向量机、神经网络分别对训练集进行训练,得到相应模型。并建立相应的十折交叉验证集计算出每种方法的预测均方误差进行对比。筛选出效果较好的模型,并对预测数据与真实数据进行数据可视化对比。对结果分析可知,随机森林、支持向量机两种机器学习方法拟合效果较好,且精度高。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !