针对传统的利用神经网络等工具进行水文趋势预测得出结果不具备解释性等不足,文中提出一种基于机器学习算法的水文趋势预测方法,该方法旨在利用 XGBOOST机器学习算法建立参照期与水文预见期之间各水文特征的相似度映射模型,从而在历史水文时间序列中匹配出与预见期水文趋势最相似的序列,从而达到水文趋势预测的目的。为了证明所提方法的高效性和可行性,以太湖水文时间序列数据为对象进行了验证。分析结果表明,基于机器学习的多元水文时间序列趋势相似性分析可以满足调度人员对未来水文趋势预测效果的要求。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !