针对传统的图像分类方法对整个图像不分等级处理以及缺乏高层认知的问题,提出了一种基于显著性检测的图像分类方法。首先,利用视觉注意模型进行显著性检测,得到图像的显著区域;然后,利用Gabor滤波方法和脉冲耦合神经网络模型,分别提取该显著区域的纹理特征和时间签名特征;最后,根据提取的纹理特征和时间签名特征,利用支持向量机实现图像分类。实验结果表明,所提方法在SIMPLIcity图像数据集上平均分类正确率达到94. 26%,在Caltech数据集上平均分类正确率为95. 43%,从而证明,显著性检测与有效的特征提取对图像分类有重要影响。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !