针对光伏发电可预测性低的问题,提出了一种综合使用通径分析(path analysis,PA)、k近邻算法(k-Nearest Neighbor,KNN)、神经网络分位数回归(quantile regression neural network,QRNN)和核密度估计(kernel density estimator,KDE)的光伏出力概率分布估计方法,构造出未来ld任意时刻的光伏出力概率密度函数,可以得到比点预测和区间预测更多的有用信息。首先由通径分析对气象因素进行约减,在降低模型输入维数的基础上减小变量间的耦合作用。然后通过K-means算法按天气类型对历史样本进行聚类,进一步提高相似样本的筛选效果。最后利用神经网络分位数回归和核密度估计对光伏出力的概率分布进行估计。实验结果表明,相比于核密度估计和传统的正态分布估计方法,采用所提方法估计出的概率分布的可靠性和锐度更高。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !