面向服务系统的执行能力依赖第三方提供的服务,在复杂多变的网络环境中,这种依赖会带来服务质量(QoS)的不确定性.而QoS是衡量第三方服务质量的重要标准,因此,有效监控QoS是对Web服务实现质量控制的必要过程.现有监控方法都未考虑环境因素的影响,比如服务器位置、用户使用服务的位置和使用时间段负载等,而这些影响在实际监控中是存在的,忽略环境因素会导致监控结果与实际结果有悖,针对这一问题,提出了一种基于加权朴素贝叶斯算法wBSRM(weightednaive Bayes rumung monitoring)的Web Service QoS监控方法.受机器学习分类方法的启发,通过TF-IDF(term frequency-mverse document frequency)算法计算环境因素的影响,通过对部分样本进行学习,构建加权朴素贝叶斯分类器.将监控结果分类,满足QoS标准为co,不满足QoS标准为Cl,监控时调用分类器得到co和CI的后验概率之比,对比值进行分析,可得监控结果满足QoS属性标准、不满足QoS属性标准和不能判断这3种情况.在网络开源数据以及随机数据集上的实验结果表明:利用TF-IDF算法能够准确地估算环境因子杈值,通过加权朴素贝叶斯分类器,能够更好地监控QoS,效率显著优于现有方法.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !