在微电网调度过程中综合考虑经济、环境、蓄电池的循环电量,建立多目标优化数学模型。针对传统多目标粒子群算法(multi-objective particle swarm optimization, MOPSO)的不足,提出引入模糊聚类分析的多目标粒子群算法(multi-objective particle swarm optimization algorithm based on fuzzy clustering,FCMOPSO),在迭代过程中引入模糊聚类分析来寻找每代的集群最优解。与MOPSO相比,FCMOPSO增强了算法的稳定性与全局搜索能力,同时使优化结果中Pareto前沿分布更均匀。在求得Pareto最优解集后,再根据各目标的重要程度,用模糊模型识别从最优解集中找出不同情况下的最优方案。最后以一欧洲典型微电网为例,验证算法的有效性和可行性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !