×

毫米波应用的电路材料应该如何选择

消耗积分:1 | 格式:pdf | 大小:0.52 MB | 2020-07-07

陈文博

分享资料个

  对于通信设备或其他等一些应用,毫米波频段非常具有吸引力,因为从30GHz到300GHz范围内有非常宽的可用频带资源。但是寻找此频段内性能卓越且价格低廉的印刷电路板(PCB)材料是一个巨大挑战。然而,通过对毫米波频段PCB材料关键参数和特性的理解,如不同PCB材料对不同电路性能的影响等,找到适合于此频段内应用的PCB材料是完全可能的。当进行微波电路设计时需要考虑很多的影响因素,这些因素通常会使电路设计变得困难或者给电路带来巨大的影响。这些因素包括抑制杂散模式传输、减小导体损耗和辐射损耗、实现有效的信号过渡,减小干扰谐振以及控制色散等。

  设计指导

  有许多设计方法可以减小波传输中的一些问题,比如使用非常薄的电路基材。一般情况下,使用的层压板厚度要小于电路最高工作频率的四分之一波长。然而实际应用中,为了减小电路板中不同电路之间的耦合谐振干扰,使用的电路基材厚度最好低于电路最高工作频率的八分之一波长。不仅电路的相互耦合或谐振会干扰主信号的传输,其产生的表面波也会影响主信号的传输。信号导体的宽度和电路层压板的厚度有关,层压板越薄,对应的导体宽度应越小。为了有效抑制杂散模式,导体宽度也应该不超过电路最高工作频率的八分之一波长。上述层压板厚度和导体宽度设计方法可直接适用于高频微带线电路设计,其他类型的电路设计还需考虑更多因素。对于接地共面波导(GCPW),又称为金属底板共面波导(CPCBW),在毫米波频段越厚的电路层压板表现出有利于抑制杂散模式传输。如图1a所示的微带线结构,微带传输线中的信号层和接地面之间存在一定的间隔(基材厚度)。如果该间隔为四分之一波长,两个铜箔平面间会产生谐振并干扰主信号传输。如果基材厚度为四分之一波长但铜导体宽度小于等于四分之一波长,谐振可能不会产生或者可以被忽略。如果基材厚度和铜导体宽度都大于等于四分之一波长,电路就很容易产生额外的谐振和杂散模式。图1b所示是接地共面波导结构。即使GCPW基材厚度和导体宽度等于四分之一波长,由于共面接地的紧耦合结构,电路杂散谐振可以避免。共面接地面与信号导体邻近且通过电镀通孔(PTHs)实现与底层地面相连。当然,所有的结构的选择都会存在各方面因素的权衡,如GCPW电路的导体损耗就比微带线电路更高。然而,考虑到工作频率,由于GCPW电路具有比微带线电路更低的辐射损耗,因此总的插入损耗并不一定更高。对于高频传输线及高频电路,插入损耗是诸多损耗成分的总和,包括介质损耗、导体损耗、辐射损耗和泄露损耗等。高频PCB 材料一般具有较大的体电阻因此RF泄露损耗非常小。介质损耗与电路材料的损耗因子或tanδ相关。损耗也受其他附加材料的影响,例如防焊油墨或粘结片。由于防焊油墨是一种高损耗材料,其损耗因子为0.02,通常在RF/微波频段尤其是毫米波频段不使用防焊油墨。此外,防焊油墨对介电常数(Dk)的影响过程难以控制,使用防焊油墨会导致阻抗失配,进一步造成回波损耗和插入损耗的增加。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !