×

使用面积分方程法实现共形微带天线的特性分析

消耗积分:1 | 格式:pdf | 大小:0.38 MB | 2020-07-07

370217

分享资料个

  本文以柱面、球面等规则形状微带天线为例,采用基于面积分方程法研究了共形微带天线的特性。采用细条带等效探针馈电模型,通过引入半Rao-Wilton-Glisson (RWG) 函数以及边界电荷,分析了电压源以及电流源模型中阻抗矩阵Z 以及V 向量的计算过程。针对共形微带天线阵列未知量大、效率低的缺陷,采用特征基函数法结合等效偶极矩法分析了共形微带天线阵列。数值计算证明了本文分析的正确性和有效性。

  1、引言

  在飞机、导弹等高速飞行的载体上,要求天线不能影响载体的动力学特性,除了将天线安装在天线罩中外,还可以使天线与载体物理共形,近年来可穿带技术也需要共形天线技术。微带天线具有易共形的特征,因此共形微带天线研究成为热点。目前,研究较多的为柱面[1]、球面[2]等规则形状微带天线,研究方法从简单的、精确度较差的传输线理论、腔模理论过度到复杂的、精确度高的全波分析理论。这里,我们采用全波分析理论,实现对共形微带天线的精确分析。积分方程法是全波分析理论中的一种常用方法,在分析共形微带天线时,主要采用两类积分方程法,应用较多的是体面积分方程法,这种方法适用范围广,理论上可以分析电小尺寸、任意曲面的共形微带天线,且计算过程简单。该方法对天线进行整体剖分,导体面和介质体一般采用三角面剖分和四面体剖分,采用矩量法求解表面等效电流和体等效电流。但其计算大尺寸阵列时会产生庞大的未知量,甚至容易产生内存溢出的现象。虽然,借助于快速算法可以扩大体面积分方程法的应用范围,但其消耗的计算机内存也是相当大的。在载体面规则的情况下可以采用另一类方法-基于分层媒质格林函数的面积分方程法,这种方法只需将导体面进行剖分,介质体不需要进行体剖分,其影响体现在该结构下的并矢格林函数里。这样,产生的未知量相比体面积分方程少的多,缓解了计算机内存压力,适用于较大尺寸的阵列分析。本文采用的即为第二类积分方程法。采用面积分方程法分析的重要环节是对相应载体结构的并矢格林函数的求解,以柱面、球面为例,本文采用面积分方程法分析了共形微带天线的性质。天线模型采用细条带等效探针激励的方式,通过引入半RWG 函数以及边界电荷,成功构建了一种可行的激励模型,重点分析了矩量法过程中阻抗矩阵以及电压向量的计算。另外,本文利用快速算法分析了共形微带天线阵列的辐射特性,为共形微带天线的研究提供了理论支撑。

  在飞机、导弹等高速飞行的载体上,要求天线不能影响载体的动力学特性,除了将天线安装在天线罩中外,还可以使天线与载体物理共形,近年来可穿带技术也需要共形天线技术。微带天线具有易共形的特征,因此共形微带天线研究成为热点。目前,研究较多的为柱面[1]、球面[2]等规则形状微带天线,研究方法从简单的、精确度较差的传输线理论、腔模理论过度到复杂的、精确度高的全波分析理论。这里,我们采用全波分析理论,实现对共形微带天线的精确分析。积分方程法是全波分析理论中的一种常用方法,在分析共形微带天线时,主要采用两类积分方程法,应用较多的是体面积分方程法[3],这种方法适用范围广,理论上可以分析电小尺寸、任意曲面的共形微带天线,且计算过程简单。该方法对天线进行整体剖分,导体面和介质体一般采用三角面剖分和四面体剖分,采用矩量法求解表面等效电流和体等效电流。但其计算大尺寸阵列时会产生庞大的未知量,甚至容易产生内存溢出的现象。虽然,借助于快速算法可以扩大体面积分方程法的应用范围,但其消耗的计算机内存也是相当大的。在载体面规则的情况下可以采用另一类方法-基于分层媒质格林函数的面积分方程法[4],这种方法只需将导体面进行剖分,介质体不需要进行体剖分,其影响体现在该结构下的并矢格林函数里。这样,产生的未知量相比体面积分方程少的多,缓解了计算机内存压力,适用于较大尺寸的阵列分析。本文采用的即为第二类积分方程法。采用面积分方程法分析的重要环节是对相应载体结构的并矢格林函数的求解,以柱面、球面为例,本文采用面积分方程法分析了共形微带天线的性质。天线模型采用细条带等效探针激励的方式,通过引入半RWG 函数以及边界电荷,成功构建了一种可行的激励模型,重点分析了矩量法过程中阻抗矩阵以及电压向量的计算。另外,本文利用快速算法分析了共形微带天线阵列的辐射特性,为共形微带天线的研究提供了理论支撑。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !