5G 愿景的真正实现,还需要更多创新。网络基站和用户设备(例如:手机)变得越来越纤薄和小巧,能耗也变得越来越低。为了适合小尺寸设备,许多射频应用所使用的印刷电路板(PCB)也在不断减小尺寸。因此,射频应用供应商必须开发新的封装技术,尽量减小射频组件的占位面积。再进一步,部分供应商开始开发系统级封装办法(SiP),以减少射频组件的数量 ——尽管这种办法将会增加封装成本。系统级封装办法正在被用于射频前端,而射频前端包含基站与天线中间的所有组件。一个典型的射频前端由开关、滤波器、放大器及调谐组件组成。这些技术设备的尺寸不断减小,并且相互集成度不断加大。结果,在手机、小蜂窝、天线阵列系统、WiFi 等 5G 应用中,射频前端正在变成一个复杂的、高度集成的系统封包。不管怎样,5G 愿景的实现都需要射频技术和封装技术的颠覆性创新。
氮化镓技术
氮化镓(GaN)是一种二进制 III/V 族带隙半导体,非常适合用于高功率、耐高温晶体管。氮化镓功率放大器技术的 5G 通信潜力才刚刚显现。氮化镓具有高射频功率、低直流功耗、小尺寸及高可靠性等优势,让设备制造商能够减小基站体积。反过来,这又有助于减少 5G 基站信号塔上安装的天线阵列系统的重量,因此可以降低安装成本。另外,氮化镓还能在各种毫米波频率上,轻松支持高吞吐量和宽带宽。氮化镓技术最适合实现高有效等向辐射基站功率(EIRP),如图 4-5 所示。美国联邦通信委员会定义了非常高的 EIRP 限值,规定对于 28GHz 和 39GHz 频带,每 100MHz 带宽需要达到 75 dBm 功率。因此带来了哪些挑战?相关设备的搭建既要满足这些目标,又要将成本、尺寸、重量和功率等保持在移动网络运营商的预算范围内。氮化镓技术是关键;相比于其他技术,氮化镓技术在达到以上高 EIRP 值时,使用的元件更少,并且输出功率更高。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !