本文介绍线性稳压器和开关模式电源(SMPS)的基本概念。主要面向不太熟悉电源设计和选择的系统工程师。还介绍了线性稳压器和 SMPS 的基本工作原理并讨论了每个解决方案的优缺点。此外,以降压转换器为例进一步说明了开关稳压器的设计考虑因素。
当今的电子系统设计需要越来越多的供电轨和供电解决方案,负载范围从备用电源的几 mA 到 ASIC 稳压器的 100A 以上不等。为目标应用选择合适的解决方案并满足指定的性能要求至关重要,如高效率、紧密印刷电路板(PCB)空间、准确的输出电压调节、快速瞬态响应、低解决方案成本等。对于许多可能没有强大电源技术背景的系统设计者来说,电源管理设计工作变得越来越频繁,越来越具有挑战性。电源转换器从给定输入电源为负载生成输出电压和电流。它需要在稳态和瞬态条件下满足负载电压或电流调节要求。还必须在组件出现故障时保护负载和系统。根据具体应用,设计人员可选择线性稳压器(LR)或开关模式电源(SMPS)解决方案。为了更好地选择解决方案,设计人员必须熟悉各种方法的优点、缺点和设计考虑因素。本文重点关注非隔离电源应用,并介绍其操作和设计基础知识。
线性稳压器的工作原理
我们先来举个简单的例子。在嵌入式系统中,前端电源提供一个 12V 总线供电轨。而在系统板上,运算放大器需要 3.3V 供电电压。产生 3.3V 电压最简单的方式是对 12V 总线使用电阻分压器,如图 1 所示。效果好吗?答案通常是否定的。在不同的工作条件下,运算放大器的 VCC 引脚电流可能有所不同。 如果使用固定电阻分压器,IC VCC 电压会随着负载的不同而不同。而且,12V 总线输入可能调节不佳。同一系统中可能有多个其他负载共用 12V 供电轨。由于总线阻抗,12V 总线电压随总线负载条件而变化。因此,电阻分压器无法向运算放大器提供经过调节的 3.3V 电压,来确保正常运行。因此,需要专用电压调节环路。如图 2 所示,反馈环路需要调节顶部电阻 R1 值,以便在 VCC 上动态调节 3.3V。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !