×

人工神经网络的发展和分类详细说明

消耗积分:0 | 格式:rar | 大小:0.04 MB | 2021-03-04

分享资料个

  人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数( activation function )。每两个节点间的连接都代表一个对于通过该连接信号的加权值, 称之为权重, 这相当于人工神经网络的记忆。网络的输出则依网络的连接方式, 权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近, 也可能是对一种逻辑策略的表达。

  它的构筑理念是受到生物(人或其他动物) 神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法( LearningMethod )得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域, 我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。

  1943 年,心理学家W.S.McCulloch 和数理逻辑学家W.Pitts 建立了神经网络和数学模型, 称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法, 证明了单个神经元能执行逻辑功能, 从而开创了人工神经网络研究的时代。

  1949 年,心理学家提出了突触联系强度可变的设想。60 年代,人工神经网络的到了进一步发展, 更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky 等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969 年出版了《Perceptron 》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究。加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !