×

使用STM32采集电池电压踩过的坑资料下载

消耗积分:10 | 格式:pdf | 大小:626.53KB | 2021-04-05

分享资料个

本文来解析一个盆友在使用STM32采集电池电压踩过的坑。以STM32F4 的ADC属于逐次逼近SAR 型ADC为例进行分析,参考STM32F405xx  Datasheet,对于如何编写ADC程序就不做描述了。 先描述一下坑 采集电池电压,利用两个电阻将电池电压分压,然后送入单片机,当电阻如上分别取4M欧/1M欧时,ADC采集到的ADC值与万用表测得的ADC输入端相差很大,取30K欧以及10k欧时,则相差变小。 盆友咨询我这是为什么?我给出了建议,先卖个关子,先来看看应用最为广泛的STM32单片机的一些特性。 STM32 ADC: STM32 12位ADC是逐次逼近型的模数转换器。它有多达19个多路复用通道,允许它测量来自16个外部源、2个内部源和VBAT通道的信号。通道的A/D转换可以在单次、连续、扫描或间断模式下进行。ADC的结果存储在左对齐或右对齐的16位数据寄存器中。模拟看门狗功能允许应用程序检测输入电压是否超过用户定义的、更高或更低的阈值。 主要功能,具体操作,怎么编程这些细节,有大量的资料就不罗嗦了,主要来看看电气特性。 电气特性 1、ADC 可支持采样频率fADC受供电电压影响,供电电压高,可支持采样频率范围更高 2、可支持输入电压VAIN范围须在参考电压范围内 3、外部输入阻阻抗RAIN最大为 4、开关切换阻抗RADC 最大为 5、内部采样保持电容CADC为4pF 上面的公式用于确定误差小于1/4 LSB时允许的最大外阻抗。N = 12(12位分辨率),k是在ADC_SMPR1寄存器中定义的采样周期数。 ADC精度vs.负注入电流:应该避免在任何模拟输入引脚上注入负电流,因为这会显著降低在另一个模拟输入上执行转换的精度。建议在模拟引脚上增加一个肖特基二极管(引脚接地),这可能会注入负电流。 Page 136 图例(上图中标识解释): 1、见表68 2、实际转移曲线的示例。 3、理想转移曲线 4、终点相关线 5、ET =未调整总误差:实际和理想传递曲线之间的最大偏差。EO =偏移误差:第一个实际过渡与第一个理想过渡之间的偏差。EG =增益误差:最后一个理想过渡与最后一个实际过渡之间的偏差。ED =微分线性误差:实际步长与理想步长之间的最大偏差。EL =积分线性误差:任何实际过渡和终点相关线之间的最大偏差。 寄生电容表示PCB的电容(取决于焊接和PCB布局质量)加上焊盘电容(大约5 pF)。寄生电容值高会降低转换精度。为了解决这个问题,应该减少fADC。 回到坑里 将盆友的电路等效绘制一下,忽略ADC采样通道内部ESD保护二极管,以及等效电流源,如下图: 好了,这图一画出来,问题的原因就显而易见了,SAR ADC是将采样电容上的电压通过逐次逼近原理转换为数字量的,按上述图,由于R2为兆级电阻,那么等效加载在采样电容上的电压就不能简单的看成是R1/R2的分压了,此时ADC的输入阻抗在百50K欧级别,简化定性看一下,忽略分布电容影响,计算方便将输入阻抗看成50K直流电阻(实际深入动态分析的话则不可忽略,假定电池电压为5V),具体计算就不做了。 为什么电阻选这么大呢?我想估计是为了将电池电压监控取样回路的电流降低,以节省电量。 跳出坑里 怎么办呢?我觉得这样应该可以: 找一个低功耗的运放做一个阻抗变换就可以兼顾两者需求,当然如果更完善一点,还可以考虑串入一个RC低通滤波环节,可以有效降低噪声。 总结一下 对于单片机ADC的使用,个人总结了这几点: 将输入短路,可测量热噪声。实际应用时,将输入端短路,采集一定数量的样本,由于热噪声符合高斯分布,可计算出其期望、方差,接入真实信号可以利用统计规律进行相应的噪声滤波处理。 量化噪声,可以通过输入一定幅度及频率的正弦波,进行度量系统的量化噪声。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !