在车载边缘计算( Vehicular Edge Computing,VEC)网络中,车辆计算资源受限导致无法处理海量的计算任务,需要将车载应用产生的计算任务卸载到ⅤEC服务器上进行处理。但车辆的移动性和区域部署的差异性易导致VEC服务器负载不均衡,造成了计算卸载效率和资源利用率降低。为解决该问题,提岀一种计算卸載和资源分配方案,以使用户效用最大化。将用户效用最大化问题转化成服务器选择决策和卸载比例与计算资源分配联合优化两个子问题,在此基础上设计基于匹配的服务器选择决策算法和基于Adam梯度优化法的计算任务卸载比例与资源分配联合优化算法,并对上述两种算法进行联合迭代,直至收敛,从而得到近似最优解以达到负载均衡。仿真结果表明,相比最近卸载方案和预测卸载方案,该方案能有效降低计算任务处理时廷和车辆能耗,增大车辆效用,促进负载均衡。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !