移动边缘计算是一种新兴的分布式和泛在计算模式,其将计算密集型和时延敏感型任务转移到附近的边缘服务器,有效缓解了移动终端资源不足的问题,显著减小了用户与计算处理节点之间的通信传输开销。然而,如果多个用户同时提岀计算密集型任务请求,特别是流程化的工作流任务请求,边缘计算环境往往难以有效地进行响应,并会造成任务拥塞。另外,受任务负载、电力供给、通信能力的实时变化等不利因素的影响,边缘服务器本身的性能总是处于波动和变化中,从而为保证任务执行效能和用户感知服务效率带来了挑战。针对上述问题,文中提出了一种基于深度Q网络(DQN)与概率性能感知杋制的边缘计算环境多工作流调度方法。首先对边缘云服务器的历史性能数据进行概率分析,然后利用获得的性能概率分布数据驱动DQN模型,不断迭代优化,生成多工作流的卸载策略。在实验验证环节,基于边缘服务器伩置数据集、性能测试数据和多个科学工作流模板,在反映不同系统负载水平的多个场景下进行了模拟实验。实验结果表明,所提方法在多工作流执行效率方面明显优于传统方法。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !