为在移动边缘计算服务器计算资源有限的情况下最小化系统总成本,提出一种多用户卸载决策与资源分配策略。优化任务执行位置选择和计算资源分配过程,对基于精英选择策略的遗传算法在编码、交叉、变异等操作方面进行改进,设计联合卸载决策与资源分配的 Improve-eGA算法。实验结果表明,与 All local、 All offloadRANDOM和CGA等算法相比, Improve-eGA在迭代次数、任务周期数、任务传输数据量等影响因素下系统总成本均为最低,验证了所提策略的有效性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !