文中探究了弹幕信息协助下的视频多标签分类任务。多标签视频分类任务根据视频内容从不同角度赋予视频多个标签,与视频推荐等应用紧密相关。多标签视频数据集的髙标注成本和对视频内容的多角度理解是该研究领域面临的主要问题弹幕是一种新近出现的用户评论形式,受到了众多用户的欢迎。由于用户参与度高,弹幕视频网站的视频拥有大量用户自发添加的标签,这些标签是天然的多标签数据。文中以此构建了一个多标签视频数据集,并整理岀了视频标签间的层级语义关系,该数据集在未来将公开发布。同时,弹幕文本模态包含大量与视频内容相关的细粒度信息,因此在以往视频分类工作融合视觉和音频模态的基础上,引入弹幕文本模态进行视频多标签分类研究。在基于聚类的NeⅪtⅥLAD模型、注意力Dbof模型和基于时序的GRU模型上进行实验,在增加弹幕模态后,GAP指标最高提升了23%,证明了弹幕信息对该任务具有辅助作用。此外,还探索了如何在分类中利用标签层级关系,通过构建标签关系矩阵来改造标签,进而将标签语乂融入训练。实验结果表明,加入标签关系后,Hit@1指标提升了15%,因此其能优化多标签分类的效果。此外,MAP指标在细粒度小类上提升了4%,说明标签语义的引入有利于预测样本量较少的类别,具有研究价值。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !