×

基于长短期记忆网络的长距离股票趋势预测

消耗积分:0 | 格式:pdf | 大小:2.05 MB | 2021-04-28

分享资料个

  随着经济和科技的快速发展,股市已成为当前金融市场的重要组成部分。传统机器学习方法在处理非线性、高噪声波动性强的股票时序预测问题时存在局限性,而近年来深度神经网络的兴起,给股彯趋势预测问题提供了新的解决方案。采用长短期记忆网络( Long short- Term Memory,LSTM)来处理长距离的股票时序问题,构建了一个多类别特征体系作为长短期记忆网络的输入进行训练,包括常用技术指标、多种关键转折点特征和个股真实事件信息等。同时,通过实验全面分析了各类特征对股票趋势预测的有效程度,对比结果表明了多类别特征体系在预测中的良妤表现,其能够达到68.77%的短期涨跌预测准确率。另外还将LSTM与CNN,RNN和MLP等模型进行了比较,实验结果表明LSTM在解决该时序预测问题上优于其他模型。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !