×

用于微表情识别的三维卷积神经网络进化方法

消耗积分:0 | 格式:pdf | 大小:1.91 MB | 2021-05-17

分享资料个

  由于微表情持续时间短、动作幅度小,因此微表情自动识别一直是一个具有挑战性的问题。针对上述问题,提出一种用于微表情识别的三维卷积神经网络进化( Three-dimensional Convolutional Neural Network Evolution,C3 Devol)方法。该方法使用能有效提取动态信息的三维卷积神经网络( Three-dimensional Convolutional Neural Network,C3D)来提取微表情在时域和空域上的特征;同时使用具有全局搜索和优化能力的遗传算法对C3D的网络结构进行优化,以获取最优的C3D网络结构和避免局部优化。利用 CASME2数据集在带有两块 NVIDIA Titan X gpu的工作站上开展了实验,结果表明C3 Devol微表情自动识别的准确率达到63.71%,优于现有的微表情自动识别方法。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !