×

AD7980-用于瑞萨微控制器平台的无操作系统驱动程序

消耗积分:2 | 格式:pdf | 大小:1.74MB | 2021-05-19

分享资料个

This version (27 Jan 2021 23:02) was approved by Robin Getz.The Previously approved version (24 Jan 2021 17:18) is available.Diff

AD7980 - No-OS Driver for Renesas Microcontroller Platforms

Supported Devices

Evaluation Boards

Overview

The AD7980 is a 16-bit, successive approximation, analog-to-digital converter (ADC) that operates from a single power supply, VDD. It contains a low power, high speed, 16-bit sampling ADC and a versatile serial interface port. On the CNV rising edge, it samples an analog input IN+ between 0 V to REF with respect to a ground sense IN−. The reference voltage, REF, is applied externally and can be set independent of the supply voltage, VDD. Its power scales linearly with throughput.

The SPI-compatible serial interface also features the ability, using the SDI input, to daisy-chain several ADCs on a single, 3-wire bus and provides an optional busy indicator. It is compatible with 1.8 V, 2.5 V, 3 V, or 5 V logic, using the separate supply VIO.

The AD7980 is housed in a 10-lead MSOP or a 10-lead QFN (LFCSP) with operation specified from −40°C to +125°C.

The AD7980-EP supports defense and aerospace applications (AQEC)

Applications

  • Battery-powered equipment
  • Communications
  • ATE
  • Data acquisitions
  • Medical instruments

01 Oct 2012 12:04 · Dragos Bogdan

The goal of this project (Microcontroller No-OS) is to be able to provide reference projects for lower end processors, which can't run Linux, or aren't running a specific operating system, to help those customers using microcontrollers with ADI parts. Here you can find a generic driver which can be used as a base for any microcontroller platform and also specific drivers for different microcontroller platforms.

Driver Description

The driver contains two parts:

  • The driver for the AD7980 part, which may be used, without modifications, with any microcontroller.
  • The Communication Driver, where the specific communication functions for the desired type of processor and communication protocol have to be implemented. This driver implements the communication with the device and hides the actual details of the communication protocol to the ADI driver.

The Communication Driver has a standard interface, so the AD7980 driver can be used exactly as it is provided.

There are three functions which are called by the AD7980 driver:

  • SPI_Init() – initializes the communication peripheral.
  • SPI_Write() – writes data to the device.
  • SPI_Read() – reads data from the device.

SPI driver architecture

The following functions are implemented in this version of AD7980 driver:

Function Description
char AD7980_Init(void) Initializes the communication peripheral.
unsigned short AD7980_Conversion(void) Initiates conversion and reads data.
float AD7980_ConvertToVolts(unsigned short rawSample, float vRef) Converts a 16-bit raw sample to volts.

This version of AD7980 driver uses the CS Mode 4-Wire, without Busy Indicator mode; the device has to be connected to an SPI-compatible digital host as following:

  • The AD7980 CNV signal (C2 on the oscilloscope) has to be connected to the SPI MOSI signal.
  • The AD7980 SDI signal (C1 on the oscilloscope) has to be connected to the SPI CS signal (Chip Select has to be controlled manually).
  • The AD7980 SCK signal (C4 on the oscilloscope) has to be connected to the SPI SCK signal.
  • The AD7980 SDO signal (C3 on the oscilloscope) has to be connected to the SPI MISO signal.

Signals generated by the driver on the SPI port

01 Oct 2012 15:06 · Dragos Bogdan

Downloads

Renesas RL78G13 Quick Start Guide

This section contains a description of the steps required to run the AD7980 demonstration project on a Renesas RL78G13 platform.

Required Hardware

Required Software

Hardware Setup

A EVAL-AD7980-PMDZ has to be connected to the PMOD1 connector, pins 1 to 6 (see image below).


  • If you want to use AVDD > DVDD (= 3.3V) then JP3 on PmodAD4 must be removed. The range for AVDD is 3.0V ≤ AVDD ≤ 5.5V.


Reference Project Overview

The reference project:

  • samples the input voltage;
  • displays the value on the LCD (in hexa, decimal and volts).
  • The reference voltage for the AD7980 is 2.5V.
  • If you want to use another reference voltage, you will need to modify the vRef parameter in ‘AD7980_ConvertToVolts()’ function from ‘PmodAD4.c’. The range for VREF is 2.4V ≤ VREF ≤ 5.1V.

Software Project Tutorial

This section presents the steps for developing a software application that will run on the Renesas Demo Kit for RL78G13 for controlling and monitoring the operation of the ADI part.

  • Run the IAR Embedded Workbench for Renesas RL78 integrated development environment.
  • Choose to create a new project (Project – Create New Project).
  • Select the RL78 tool chain, the Empty project template and click OK.

  • Select a location and a name for the project (ADIEvalBoard for example) and click Save.

  • Open the project’s options window (Project – Options).
  • From the Target tab of the General Options category select the RL78 – R5F100LE device.

  • From the Setup tab of the Debugger category select the TK driver and click OK.

  • Extract the files from the lab .zip archive and copy them into the project’s folder.

  • The new source files have to be included into the project. Open the Add Files… window (Project – Add Files…), select all the copied files and click open.

  • At this moment, all the files are included into the project.
  • The project is ready to be compiled and downloaded on the board. Press the F7 key to compile it. Press CTRL + D to download and debug the project.
  • A window will appear asking to configure the emulator. Keep the default settings and press OK.

  • To run the project press F5.

03 Sep 2012 13:02 · Dragos Bogdan

Renesas RL78G14 Quick Start Guide

This section contains a description of the steps required to run the AD7980 demonstration project on a Renesas RL78G14 platform using the EVAL-AD7980-PMDZ.

Required Hardware

Required Software

The AD7980 demonstration project for the Renesas RL78G14 platform consists of three parts: the AD7980 Driver, the EVAL-AD7980-PMDZ Demo for RL78G14 and the RL78G14 Common Drivers.

All three parts have to be downloaded.

Hardware Setup

A EVAL-AD7980-PMDZ has to be connected to the PMOD1 connector, pins 1 to 6 (see image below).


  • If you want to use AVDD > DVDD (= 3.3V) then JP3 on PmodAD4 must be removed. The range for AVDD is 3.0V ≤ AVDD ≤ 5.5V.


The reference project:

  • samples the input voltage;
  • displays the value on the LCD (in hexa, decimal and volts).
  • The reference voltage for the AD7980 is 2.5V.
  • If you want to use another reference voltage, you will need to modify the vRef parameter in ‘AD7980_ConvertToVolts()’ function from ‘PmodAD4.c’. The range for VREF is 2.4V ≤ VREF ≤ 5.1V.

Software Project Tutorial

This section presents the steps for developing a software application that will run on the Renesas Demo Kit for RL78G14 for controlling and monitoring the operation of the ADI part.

  • Run the IAR Embedded Workbench for Renesas RL78 integrated development environment.
  • Choose to create a new project (Project – Create New Project).
  • Select the RL78 tool chain, the Empty project template and click OK.

  • Select a location and a name for the project (ADIEvalBoard for example) and click Save.

  • Open the project’s options window (Project – Options).
  • From the Target tab of the General Options category select the RL78 – R5F104PJ device.

  • From the Setup tab of the Debugger category select the TK driver and click OK.

  • Copy the downloaded files into the project's folder.

  • The new source files have to be included into the project. Open the Add Files… window (Project – Add Files…), select all the copied files and click open.

  • At this moment, all the files are included into the project.
  • The project is ready to be compiled and downloaded on the board. Press the F7 key to compile it. Press CTRL + D to download and debug the project.
  • A window will appear asking to configure the emulator. Keep the default settings and press OK.

  • To run the project press F5.

09 May 2013 17:10 · Dragos Bogdan

Renesas RX62N Quick Start Guide

This section contains a description of the steps required to run the AD7980 demonstration project on a Renesas RX62N platform.

Required Hardware

Required Software

Hardware Setup

A EVAL-AD7980-PMDZ has to be interfaced with the Renesas Demonstration Kit (RDK) for RX62N:

  PmodAD4 Pin 1 (CS)   → YRDKRX62N J8 connector Pin 15
  PmodAD4 Pin 2 (MOSI) → YRDKRX62N J8 connector Pin 19
  PmodAD4 Pin 3 (MISO) → YRDKRX62N J8 connector Pin 22
  PmodAD4 Pin 4 (CLK)  → YRDKRX62N J8 connector Pin 20
  PmodAD4 Pin 5 (GND)  → YRDKRX62N J8 connector Pin 4
  PmodAD4 Pin 6 (VCC)  → YRDKRX62N J8 connector Pin 3

Reference Project Overview

The reference project initiates conversions and reads the captured data from the AD7980.

Software Project Setup

This section presents the steps for developing a software application that will run on the Renesas Demo Kit for RX62N for controlling and monitoring the operation of the ADI part.

  • Run the High-performance Embedded Workshop integrated development environment.
  • A window will appear asking to create or open project workspace. Choose “Create a new project workspace” option and press OK.
  • From “Project Types” option select “Application”, name the Workspace and the Project “ADIEvalBoard”, select the “RX” CPU family and “Renesas RX Standard” tool chain. Press OK.

  • A few windows will appear asking to configure the project:
    • In the “Select Target CPU” window, select “RX600” CPU series, “RX62N” CPU Type and press Next.
    • In the “Option Setting” windows keep default settings and press Next.
    • In the “Setting the Content of Files to be generated” window select “None” for the “Generate main() Function” option and press Next.
    • In the “Setting the Standard Library” window press “Disable all” and then Next.
    • In the “Setting the Stack Area” window check the “Use User Stack” option and press Next.
    • In the “Setting the Vector” window keep default settings and press Next.
    • In the “Setting the Target System for Debugging” window choose “RX600 Segger J-Link” target and press Next.
    • In the “Setting the Debugger Options” and “Changing the Files Name to be created” windows keep default settings, press Next and Finish.
  • The workspace is created.

  • The RPDL (Renesas Peripheral Driver Library) has to integrated in the project. Unzip the RPDL files (double-click on the file “RPDL_RX62N.exe”). Navigate to where the RPDL files were unpacked and double-click on the “Copy_RPDL_RX62N.bat” to start the copy process. Choose the LQFP package, type the full path where the project was created and after the files were copied, press any key to close the window.
  • The new source files have to be included in the project. Use the key sequence Alt, P, A to open the “Add files to project ‘ADIEvalBoard’” window. Double click on the RPDL folder. From the “Files of type” drop-down list, select “C source file (*.C)”. Select all of the files and press Add.

  • To avoid conflicts with standard project files remove the files “intprg.c” and “vecttbl.c” which are included in the project. Use the key sequence Alt, P, R to open the “Remove Project Files” window. Select the files, click on Remove and press OK.

  • Next the new directory has to be included in the project. Use the key sequence Alt, B, R to open the “RX Standard Toolchain” window. Select the C/C++ tab, select “Show entries for: Include file directories” and press Add. Select “Relative to: Project directory”, type “RPDL” as sub-directory and press OK.

  • The library file path has to be added in the project. Select the Link/Library tab, select “Show entries for: Library files” and press Add. Select “Relative to: Project directory”, type “RPDL/RX62N_library” as file path and press OK.

  • Because the “intprg.c” file was removed the “PIntPrg” specified in option “start” has to be removed. Change “Category” to “Section”. Press “Edit”, select “PIntPRG” and press “Remove”. From this window the address of each section can be also modified. After all the changes are made press OK two times.

  • At this point the files extracted from the zip file located in the “Software Tools” section have to be added into the project. Copy all the files from the archive into the project folder.

  • Now, the files have to be included in the project. Use the key sequence Alt, P, A to open the “Add files to project ‘ADIEvalBoard’” window. Navigate into ADI folder. From the “Files of type” drop-down list, select “Project Files”. Select all the copied files and press Add.

  • Now, the project is ready to be built. Press F7. The message after the Build Process is finished has to be “0 Errors, 0 Warnings”. To run the program on the board, you have to download the firmware into the microprocessor’s memory.
03 Feb 2012 15:32 · Dragos Bogdan

More information

01 Jun 2012 12:17

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !