×

AD5781-适用于微芯片微控制器平台的无操作系统驱动程序

消耗积分:2 | 格式:pdf | 大小:892.28KB | 2021-05-13

分享资料个

This version (30 Sep 2013 11:56) was approved by Lucian Sin.The Previously approved version (25 Jul 2013 11:02) is available.Diff

AD5781 - No-OS Driver for Microchip Microcontroller Platforms

Supported Devices

Evaluation Boards

  • PmodDA5

Overview

The AD5781 is a single 18-bit, unbuffered voltage-output DAC that operates from a bipolar supply of up to 33 V. The AD5781 accepts a positive reference input in the range 5V to VDD – 2.5 V and a negative reference input in the range VSS + 2.5 V to 0 V. The AD5781 offers a relative accuracy specification of ±0.5 LSB max, and operation is guaranteed monotonic with a ±0.5 LSB DNL max specification.

The part uses a versatile 3-wire serial interface that operates at clock rates up to 35 MHz and that is compatible with standard SPI®, QSPI™, MICROWIRE™, and DSP interface standards. The part incorporates a power-on reset circuit that ensures the DAC output powers up to 0 V and in a known output impedance state and remains in this state until a valid write to the device takes place. The part provides an output clamp feature that places the output in a defined load state.

Applications

  • Medical Instrumentation
  • Test and Measurement
  • Industrial Control
  • Scientific and Aerospace Instrumentation
  • Data Acquisition Systems
  • Digital Gain and Offset Adjustment
  • Power Supply Control

28 Feb 2013 09:46 · Dan Nechita

The goal of this project (Microcontroller No-OS) is to be able to provide reference projects for lower end processors, which can't run Linux, or aren't running a specific operating system, to help those customers using microcontrollers with ADI parts. Here you can find a generic driver which can be used as a base for any microcontroller platform and also specific drivers for different microcontroller platforms.

Driver Description

The driver contains two parts:

  • The driver for the AD5781 part, which may be used, without modifications, with any microcontroller.
  • The Communication Driver, where the specific communication functions for the desired type of processor and communication protocol have to be implemented. This driver implements the communication with the device and hides the actual details of the communication protocol to the ADI driver.

The Communication Driver has a standard interface, so the AD5781 driver can be used exactly as it is provided.

There are three functions which are called by the AD5781 driver:

  • SPI_Init() – initializes the communication peripheral.
  • SPI_Write() – writes data to the device.
  • SPI_Read() – reads data from the device.

SPI driver architecture

The following functions are implemented in this version of AD5781 driver:

Function Description
long AD5781_Init(void) Initializes the communication with the device. Return 0 in case of success and negative error code otherwise.
long AD5781_SetRegisterValue(unsigned char registerAddress, unsigned long registerValue) Writes data into a register. Receives as parameters the address of the register and the value of the register. Returns 0 in case of success or negative error code.
long AD5781_GetRegisterValue(unsigned char registerAddress) Reads the value of a register. Receives as parameter the address of the register. Returns the value of the register or negative error code.
long AD5781_DacOuputState(unsigned char state) Sets the DAC output in one of the three states(normal, clamped via 6KOhm to GND, tristate). Returns negative error code or 0 in case of success.
long AD5781_SetDacValue(unsigned long value) Writes to the DAC register. Receives as parameter the value to be written to DAC. Returns negative error code or 0 in case of success.
long AD5781_SoftInstruction(unsigned char instructionBit) Asserts RESET, CLR or LDAC in a software manner. Receives as parameter one of the software control bits(RESET, CLR or LDAC). Returns negative error code or 0 in case of success.
long AD5781_Setup(unsigned long setupWord) Configures the output amplifier, DAC coding, SDO state and the linearity error compensation. Receives as parameter a 24-bit value that sets or clears the Control Register bits(RBUF, BIN/2sC, SDODIS, LINCOMP). Returns negative error code or 0 in case of success.
28 Feb 2013 09:16 · Dan Nechita

Downloads

Digilent Cerebot MX3cK Quick Start Guide

This section contains a description of the steps required to run the AD7303 demonstration project on a Digilent Cerebot MX3cK platform.

Required Hardware

Required Software

The AD5781 demonstration project for PIC32MX320F128H consists of three parts: the AD5781 Driver, the PmodDA5 Demo for PIC32MX320F128H and the PIC32MX320F128H Common Drivers.

All three parts have to be downloaded.

Hardware Setup

A PmodDA5 has to be connected to the JE connector of Cerebot MX3cK development board.

Reference Project Overview

The following commands were implemented in this version of AD5781 reference project for Cerebot MX3cK board.

Command Description
help? Displays all available commands.
reset! Resets the AD5781 device.
coding= Selects the coding style. Accepted values:
0 - Offset binary coding.
1 - Two's complement coding.(default)
coding? Display the current coding style.
register= Writes to the DAC register. Accepted values:
0 .. 262143 - the value written to the DAC.
register? Displays last written value to the DAC register.
voltage= Sets the DAC output voltage. Accepted values:
-10 .. +10 - desired output voltage in volts.
voltage? Displays the output voltage.
output= Selects the DAC output state. Accepted values:
0 - Normal state.
1 - Clamped via 6KOhm to AGND.
2 - Tristate.(default)
output? Displays the DAC output state.
rbuf= Sets/resets the RBUF bit from control register. Accepted values:
0 - RBUF is reset.
1 - RBUF is set.(default)
rbuf? Displays the value of RBUF bit from control register.

Commands can be executed using a serial terminal connected to the UART1 peripheral of PIC32MX320F128H.

The following image shows a generic list of commands in a serial terminal connected to processor’s UART peripheral.

Software Project Setup

This section presents the steps for developing a software application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.

  • Run the MPLAB X integrated development environment.
  • Choose to create a new project.
  • In the Choose Project window select Microchip Embedded category, Standalone Project and press Next.

  • In the Select Device window choose PIC32MX320F128H device and press Next.

  • In the Select Tool window select the desired hardware tool and press Next.

  • In the Select Compiler window chose the XC32 compiler and press Next.

  • In the Select Project Name and Folder window choose a name and a location for the project.

  • After the project is created, all the downloaded source files have to be copied in the project folder and included in the project.

  • The project is ready to be built and downloaded on the development board.

05 Jul 2012 14:45

More information

01 Jun 2012 12:17

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !