×

CNN和DBN在肺结节影像分类识别的对比分析

消耗积分:0 | 格式:pdf | 大小:2.91 MB | 2021-06-16

分享资料个

  针对肺结节图像的分类识别精度和效率问题,分别将CNN( Convolution Neural Network)模型和DBN( Deep beliefNetwork)模型用于肺结节分类识别,并评估不同的深度学习模型在肺结节图像分类方面的性能。首先,实验将预处理过的训练集和标签分别输入到CNN模型和υBN模型,达到训练模型的目的;其次,将测试集输入到参数最优的模型中,比较两种模型测试集分类的准确率、敏感性和特异性,并分析两种模型的分类识别性能。最后,从分类准确率、敏感性和特异性3个指标以及时间复杂度来分析比较两种模型,发现CNN模型在肺结节图像分类识别上更有优越性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !