×

集成WL-CNN和SL-Bi-LSTM的旅游问句文本分类算法

消耗积分:0 | 格式:pdf | 大小:1.18 MB | 2021-03-17

分享资料个

  为提高旅游问句文本中关键特征的利用率,提出一种集成词级卷积神经网络(WL-CNN)与句级双向长短期记忆(SL-Bi-LSTM)网络的旅游问句文本分类算法。利用 WL-CNN和SL-Bi-LSTM分别学习词序列子空间向量和句序列深层语义信息,通过多头注意力机制将两种深度学习模型进行集成以实现旅游问句文本的语法和语义信息互补,并通过 Softmax分类器得到最终的旅游问句文本分类结果。实验结果表明,与基于传统深度学习模型的旅游问句文本分类算法相比,该算法在准确率和损失率上分别取得了09866和0.1277的最优结果,具有更好的分类效果。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !