×

一种用于非平衡数据的SVM学习算法

消耗积分:5 | 格式:rar | 大小:95 | 2009-04-14

刘润生

分享资料个

在实际应用中的分类数据往往是非平衡数据,少数类别的数据可能有很大的分类代价。分类性能不仅要考虑分类精度,同时要考虑分类代价。该文扩展了支持向量机(SVM)学习方法,对于以高斯核为核函数时的少数类和多数类使用不同的惩罚参数C+, C-以获得高敏感度的超平面,并提出利用遗传算法对SVM的学习参数进行优化调整。给出一种新的评价函数,对分类结果的质量进行评价。实验结果证明,算法对于非平衡数据的分类有较好的效果,对少数类样本预测的准确性较高。
关键词:支持向量机;非平衡数据;评价函数;学习参数优化

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !