×

一种高精度的肝脏图像自动分割算法

消耗积分:0 | 格式:pdf | 大小:4.27 MB | 2021-05-27

分享资料个

  在利用卷积神经网络分割肝脏边界较模糊的影像数据时容易丢失位置信息,导致分割精度较低。针对该问题,提出一种基于分水岭修正与U-Net模型相结合的肝脏图像自动分割算法。利用U-Net分层学习图像特征的优势,将浅层特征与深层语义特征相融合,避免丢失目标位置等细节信息,得到肝脏初始分割结果。在此基础上通过分水岭算法形成的区域块对肝脏初始分割结果的边界进行修正,以获得边界平滑精确的分割结果。实验结果表明,与传统的图割算法和全卷积神经网络算法相比,该算法能够实现更为精准的肝脏图像分割。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !