针对压缩感知(Compressed Sensing,CS)方法需将图像矩阵转化为向量后进行特征提取,导致数据维数很大,计算复杂等缺点,提出二维离散余弦变换(2DDCT)和压缩感知(Compressed Sensing,CS)相结合的人脸识别方法。新方法首先利用2DDCT将图像变换到频域,压缩人脸图像以去掉人眼不敏感的中频分量与高频分量,这样有效降低了所需特征的维数,减少了计算量;然后通过感知算法进行特征提取得到人脸识别特征,最后运用最近邻分类器完成人脸的识别。在ORL、Yale及Feret人脸数据库的实验结果证明了该算法的有效性与稳健性,特别是在YaleB人脸数据库运用该方法得到了很好的试验结果。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !