当前的人脸识别算法在理想环境下的识别正确率高,自适应能力强;但是在非理想环境下,人脸识别正确率急剧下降。为了提高人脸识别结果的稳定性,设计了稀疏表示和支持向量机相融合的非理想环境人脸识别算法。首先,提取非理想环境人脸的特征,并构建非理想环境人脸识别的特征字典;然后,采用特征字典对非理想环境亼脸识别训练样本和测试样本进行处理构建非理想环境人脸识别的学习样本;最后,采用攴持向量机建立非理想环境人脸识别的分类器来对非理想环境人脸进行识别,并采用多个标准人脸数据库对所提非理想环境人脸识别算法进行测试。文中算法的非理想环境亼脸识别正确率高,误识率和拒识率低,相对于其他人脸识别算法,其更适应环境的变化,对非理想环境人脸识别的整体效果更优,而且提高了非理想环境人脸识别的效率,具有十分明显的优越性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !