介绍了新兴的独立分量分析技术的基本概念和原理,以及具有代表性的算法,即FastICA算法、EASI算法、非线性PCA算法和基于自然梯度的最大似然估计算法。通过降噪仿真实验,并采用均方误差作为降噪的性能指数,对这些算法与传统的自适应信号处理算法进行比较。所得实验结果表明,独立分量分析算法在降噪上的效果优于自适应信号处理算法。因此在降噪上具有较大的应用价值。
The paper introduces a new technology of signal processing: independent component analysis, including its basic concept, principles, and some representative algorithms, such as FastICA, EASI, Nonlinear PCA, and natural gradient algorithm based maximum likelihood estimation. In a denoising simulation experiment with the mean square error criterion, these algorithms are compared to the classic algorithms of adaptive signal processing, such as LMS and RLS. Results show that in denoising application ICA algorithms are superior to the classic adaptive algorithms. Thus ICA algorithms have large value in denoising application, deservnig further study and promoting.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !