×

一种具有渐进学习能力的融合方法

消耗积分:3 | 格式:rar | 大小:135 | 2009-07-08

打马过草原

分享资料个

运行在动态与未知环境下的多传感器系统往往会面临环境与自身结构的渐进式变化,导致一般的具有学习能力的融合方法很难适用. 本文提出了一种具有渐进学习能力的融合方法,它具有良好的自适应性和鲁棒性. 该方法由一种名为接受域加权回归(Receptive FieldWeighted Regression) 的渐进式学习算法和加权平均的融合算法组成.最后以三个摄像机联合定位作为研究对象,对该方法进行了仿真,验证了其有效性,同时还和基于BP 神经网络的融合方法进行了比较.
关键词:  传感器融合; 渐进式学习算法; 接受域加权回归
Abstract :  The multisensor systems under the dynamic and unknown environment often encounter the incremental modification of environment and its configuration. This results in the fact that the fusion methods with learning ability cannot be suitable any more under this condition. In this paper ,a new fusion method with incremental learning ability is proposed. This method utilizes an incre2 mental learning algorithm called Receptive Field Weighted Regression (RFWR) ,and weighted average is used as the fusion strategy , thus it is more adaptive and robust than previous ones. The problem of three cameras positioning is taken into account and the corre2 sponding simulation is implemented. Simulation results verify the effectiveness of this method. Comparison with BP neural network2 based fusion method is also provided.
Key words :  sensor fusion ;incremental learning algorithm;RFWR

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !