×

基于涌现自组织映射的聚类分析与可视化处理

消耗积分:3 | 格式:rar | 大小:282 | 2009-07-11

laisvl

分享资料个

Kohonen 自组织特征映射可实现高维模式空间到低维拓扑结构的映射,借此可进行模
式聚类分析及高维数据的二维可视化。但当输入样本数目较多、复杂度较大时,采用KSOM将使相邻类簇间发生大面积重叠,降低聚类效果。本文通过利用涌现自组织特征映射神经网络对数据进行聚类分析,并通过无边界U 矩阵实现可视化功能。测试结果表明,借助ESOM模型进行数据的聚类分析与可视化在诸多方面表现出优越的性能。
关键词: 涌现自组织特征映射;聚类; U 矩阵
Abstract: Kohonen Self-Organizing Maps (KSOM) can implement a mapping from high-dimensional pattern space to low-dimensional topological structure. With the number of sampling data increasing and their complexity enhancing, the adjacent clusters of KSOM may be overlap in a common region. This can reduce the effect of data clustering and visualization. To facilitate clustering analysis and visualization of data, the Emergent Self-Organizing Feature Maps (ESOM) and a boundless U-matrix are needed. It is proved that ESOM model is feasible and effective for high-dimensional data clustering and visualization processing.
Keywords: Emergent Self-Organizing Feature Maps; Clustering; U-Matrix

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !