随着AR/VR行业的兴起,以及智能移动机器人、无人驾驶的发展,行业对SLAM技术的需求出现了井喷。
另一方面,随着传感器技术的发展,计算资源的丰富以及算法的进步,SLAM技术本身也进入了一个从算法到产品过渡的阶段。行业中已经出现了一些以SLAM技术为主的产品,但离进入千家万户还有一定的距离。
本文将从SLAM的基本技术,典型SLAM的应用以及目前行业中使用的解决方案来介绍。
▍SLAM技术入门
SLAM是simultaneous localization and mapping的简写,中文直译为同时定位与建图,其中又以定位更为核心,建图实际上是在定位的基础上,将观测数据进行融合的过程。
关于定位,我们或许听过很多相关的术语,GPS(全球定位系统),基站定位,WIFI定位,陀螺仪等等;但以上定位方案无论是适用场景,还是精度,抑或是价格,对于常见的SLAM应用都不能满足需求,因此需要寻求更好的定位解决方案。
定位本质上可以定义为一个估计问题,通过传感器的观测数据(存在不同程度的噪声)来估计位置;也可以定义为一个优化问题,通过多种观测数据之间的约束关系,对位置进行优化。
逻辑上,噪声越低的传感器能够获得更好的定位精度,但需要在价格和精度上寻求balance;
目前行业中使用的传感器有:激光雷达(单线、多线,能够获得对应点的深度信息),深度摄像头(TOF,结构光,双目;三种方案各有优缺点,能够获取彩色和深度图像),IMU(惯导单元,能够获得高频的位移信号),彩色摄像头(单目,鱼眼,或者是经过特殊的设计获得更大的FOV),码盘(记录累积里程,累积误差大);
对于定位,通常意义上我们都指绝对定位,比如我们的GPS,固定原点位置,所有的定位都以这个原点作为参考,并以经纬度表示;又比如建筑物内部,我们规定一个原点,其他的定位结果都已这个位置为参考,并加上度量衡(cm, m等)表示。
另外,在SLAM中我们也考虑相对定位(或者称为相对位移),当前时刻相对于前一时刻的旋转、平移量是多少,并且可以通过时序的累积得到绝对定位。
关于SLAM入门,在这里把几个相关的资料list出来:
1. slamcn主页:http://suo.im/SaPrA
2. 大神Andrew Davison的主页:http://suo.im/3WJvc1
3. openslam:http://openslam.org/
4. 《视觉SLAM十四讲》,高翔,总结比较全面,同时有对应的code可以参考
5. slam基础知识:http://suo.im/2icPv3
学习SLAM需要哪些预备知识?感兴趣的朋友可以关注一下上面的材料。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !