2017年的WWDC上,苹果发布了Core ML这个机器学习框架。现在,开发者可以轻松的使用Core ML把机器学习功能集成到自己的应用里,让应用变得更加智能,给用户更牛逼的体验。
Core ML是做什么的
我们知道,机器学习的一个重要应用领域就是事先使用大量数据训练机器,让训练后的机器在面对从未见过的数据时能做出相应的判断。比如,学习大量病人体征数据后,预测疾病发生的概率;学习大量围棋对局后,面对一个陌生的棋局,知道在哪下棋赢的概率更高。
对机器的训练会产生一个关于特定问题的模型,对模型输入特定的数据,模型返回的判断的结果就是输出。Core ML实际做的事情是使用事先训练好的模型(trained model),在本地进行计算,最终返回结果。
应用和Core ML的交互流程大体如图所示:

从图上可以看出,真正智能的部分其实是这个事先训练好的模型(trained model),这个模型决定了最终判断的结果。苹果提供了一些转化好的Core ML格式的模型,我们也可以通过苹果提供的工具把自己在别的常用机器学习工具生成的模型转化为Core ML格式的模型。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !