×

基于知识图谱的QA系统研究

消耗积分:1 | 格式:rar | 大小:0.6 MB | 2017-10-10

分享资料个

 QA系统用于回答人们以自然语言形式提出的问题,其在互联网、通信及医疗等领域获得显著的成功。其中,IBM研发的Watson系统就在与人类的答题比赛中获胜并首次获得100万美金奖励;苹果的Siri系统成功运行于iPhone之中,改变人与iPhone的交流方式;还有很多其它的公司也成功研发文字或语音的QA系统,比如谷歌的Google Now、亚马逊的Alexa和微软的Cortana;另外,在医学上面如Health Care,QA系统也帮助医生与患者得到及时的交互。
  QA系统依据其回答语料可以分为两类,一类是常见的纯文本形式,如网络文档、问答社区内容、搜索引擎结果、百科数据等。另一类则是知识图谱,通常以RDF三元组的形式结构化表示。由于结构化的特点,QA系统相比纯文本语料,往往可以提供更加精确和简练的结果。另一方面,近些年涌现出了大批十亿甚至更大规模的知识图谱,包括WolframAlpha、Google Knowledge Graph、Freebase等。这些知识图谱的出现保证基于其的问答系统的覆盖率。所以,当前基于知识图谱的开放领域QA系统是可行的。
  系统架构
  QA系统分为三层架构模型,分别为实体、语言和应用层,如下图所示。
  基于知识图谱的QA系统研究
  其中最下层为实体层,其为上层模型提供最基础的计算单元,包括了语义社区搜索、语义消歧义和同现网络模块;中间层为语言层,作为连接实体层和应用层的桥梁,其包含了具有一定语义信息的短文本;最上层则为集成的QA系统,包括了问题模板和深度学习模块。
  实体层模型研究
  语义社区搜索
  基于知识图谱的QA系统研究
  如上图所示,节点即代表单词在语义社区网络中的语义,边则为单词与单词之间的关系,以此模型即可找到一个单词所在的社区,以及单词之间的相似度,如下图所示pot和bowl为同一语义社区,有很高的相似度;pot和plate为不同的语义社区,其中两个有两个单词交集,为中等相似度;pot和tube为不同的语义社区,其中只有一个单词交集,为低等相似度

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !