基于知识图谱的问答中问句侯选主实体筛选步骤繁琐,且现有多数模型忽略了问句与关系的细粒度相关性。针对该问题,构建基于 BILSTM-CRF的细粒度知识图谱问答模型,其中包括实体识别和关系预测2个部分。在实体识别部分,利用 BILSTM-CRE模型提高准确性,并将N-Gram算法与 Levenshtein距离算法相结合用于候选主实体的筛选,简化候选主实体筛选过程。在关系预测部分,分别应用注意力机制和卷积神经网络从语义层次和词层次捕获问句与关系之间的相互联系。使用rre6Base中的BB2M和FB5M评估数据集进行实验,结果表明,与针对单一关系的问答方法相比,该模型对于实体关系对的预测准确率更高。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !