将个性化推荐技术运用于新闻阅读应用,以其快速、精准的特点帮助用户快捷获取兴趣新闻,是值得挖掘的研究方向。设计并实现了一种新闻推荐系统,该系统基于用户协同过滤推荐技术,通过收集用户数据,计算阅读耗时因子对用户偏好值进行修正,纳入新闻热度影响并通过热度惩罚用户相似度值;然后基于相似邻居集对用户未阅读的新闻进行TopN排序得到推荐列表,从而向用户推送其感兴趣的新闻。经测试,原型系统能够实时更新用户兴趣模型,达到推新、推准的效果,各项功能均已达到设计预期目标。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !