针对现有的基于垂直格式挖掘频繁项集采用正交的方式两两进行比较耗费大量时间和产生的Tid集可能很大浪费存储空间的问题,提出了一种基于三角矩阵和差集的垂直数据格式挖掘频繁项集的挖掘算法。该算法利用差集解决了对稠密数据集进行频繁项集挖掘时的Tid集可能很大的问题,并且利用一种前提方法判断是否有必要连接产生候选频繁K+1项集,减少时间的开销,而且在存储上用三角矩阵的数据结构可以进一步节省存储空间。实验结果表明,本算法大大减少挖掘频繁项集时间和空间内存的开销。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !