通过优化 Spark mllib机器学习库中的隐含狄利克雷分布(LDA)主题模型,提出一种改进的学术研究热点挖掘方法。采用LDA主题模型对学术论文关键词进行建模,利用困惑度确定主题模型的最佳主题个数,并将文档-主题和主题-词概率分布矩阵转化为文档-主题和主题-词评分矩阵。通过计算背景主题与评分矩阵中各主题之间的相似度对主题进行排序,挖掘出学术论文中的研究热点。实验结果表明,该方法能提高LDA主题模型的挖掘效果,有助于发现有价值的学术研究热点主题。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !