×

深度学习助阵无人驾驶攻克三大识别技术

消耗积分:1 | 格式:rar | 大小:未知 | 2017-11-20

分享资料个

  深度学习在无人驾驶领域主要用于图像处理,也就是摄像头上面。当然也可以用于雷达的数据处理,但是基于图像极大丰富的信息以及难以手工建模的特性,深度学习能最大限度的发挥其优势。
  现在介绍一下全球摄像头领域的巨擘,以色列的mobileye公司是怎么在他们的产品中运用深度学习的。 深度学习可以用于感知,识别周围环境,各种对车辆有用的信息;也可以用于决策,比如AlphaGo的走子网络(Policy Network),就是直接用DNN训练, 如何基于当前状态作出决策。
  环境识别方面,mobileye把他们识别方面的工作主要分为三部分,物体识别,可行驶区域检测,行驶路径识别。
  物体识别
  一般的物体识别是这样子的:
  
  有一个长方形框框能识别出来车在哪里,很好,很不错,但是Mobileye出来的是这样子的:
  

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !