×

基于深度学习的疲劳驾驶检测算法及模型

消耗积分:0 | 格式:pdf | 大小:4.15 MB | 2021-03-30

分享资料个

  为实现复杂驾驶环境下驾驶人员疲劳状态识别与预警,提出基于深度学习的疲劳驾驶检测算法。利用基于 shuffle- channel思想的 MTCNN模型检测常规摄像头实时采集的驾驶人员人脸图像,使用PFLD深度学习模型进行人脸关键点检测以定位眼部、嘴部和头部位置,从中提取眨眼频率、嘴巴张开程度和点头频率等特征参数,并通过多特征融合策略获取驾驶人员疲劳状态,从而实现疲劳驾驶的有效预警。实验结果表明,该算法给出的疲劳驾驶预警结果均未岀现误判情况,具有较高的检测准确率和较好的鲁棒性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !