×

基于测地距离的KPCA人脸识别方法

消耗积分:0 | 格式:rar | 大小:0.61 MB | 2017-11-25

分享资料个

  针对人脸检测数据集中的信息均为高维特征向量且人脸识别易受表情变化影响等问题,本文提出一种基于测地距离的KPCA人脸识别方法,该方法利用非线性方法提取主成分。先采用KPCA方法把人脸数据映射到高维空间,进而在高维空间中提取人脸的主成分,其中核函数为多项式核函数;然后引入测地距离替换原来的欧氏距离进行相似度量,其能更准确地测量出两像素点间的实际距离,使得人脸识别率受表情变化影响小。该方法不但可以实现降维,而且还能达到有效提取特征的目的。在ORL人脸库上的实验结果表明,该方法的识别率明显优于PCA、KPCA等方法的识别率。

基于测地距离的KPCA人脸识别方法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !