Grounding is undoubtedly one of the most diffi cult subjects in system design. While the basic concepts are relatively simple, implementation is very involved. Unfortunately, there is no “cookbook” approach that will guarantee good results, and there are a few things that, if not done well, will probably cause headaches. For linear systems, the ground is the reference against which we base our signal. Unfortunately, it has also become the return path for the power-supply current in unipolar supply systems. Improper application of grounding strategies can cripple performance in high-accuracy linear systems. Grounding is an issue for all analog designs, and it is a fact that proper implementation is no less essential in PCB-based circuits. Fortunately, certain principles of quality grounding, especially the use of ground planes, are intrinsic to the PCB environment. Since this factor is one of the more signifi cant advantages to PCBbased analog designs, appreciable discussion here is focused on it. Some other aspects of grounding that must be managed include the control of spurious ground and signal return voltages that can degrade performance. These voltages can be due to external signal coupling, common currents, or, simply, excessive IR drops in ground conductors. Proper conductor routing and sizing, as well as differential signal handling and ground isolation techniques, enable control of such parasitic voltages.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !