×

基于模糊集的隐私保护模型

消耗积分:3 | 格式:rar | 大小:0.44 MB | 2017-11-29

分享资料个

  隐私保护数据发布是近年来研究的热点技术之一,主要研究如何在数据发布中避免敏感数据的泄露,又能保证数据发布的高效用性。基于模糊集的隐私保护模型,文中方法首先计算训练样本数据的先验概率,然后通过将单个敏感属性和两个相关联属性基于贝叶斯分类泛化实现隐私保护。通过实验验证基于模糊集的隐私保护模型(Fuzzy K匿名)比经典隐私保护是匿名模型具有更高的效率,隐私保护度高,数据可用性强。
 

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !