×

基于低小慢无人机野外飞行自主降落识别方法

消耗积分:1 | 格式:rar | 大小:0.98 MB | 2017-11-30

分享资料个

  针对低小慢无人机野外飞行场景复杂自主降落场景识别问题,提出了一种融合局部金字塔特征和卷积神经网络学习特征的野外场景识别算法。首先,将场景分为4x4和8x8块的小场景,使用方向梯度直方图(HOG)算法提取所有块的场景特征,所有特征首尾连接得到具有空间金字塔特性的特征向量。其次,设计一个针对场景分类的深度卷积神经网络,采用调优训练方法得到卷积神经网络模型,并提取深度网络学习特征。最后,连接两个特征得到最终场景特征,并使用支持向量机( SVM)分类器进行分类。所提算法在Sports一8、Scene-15、Indoor-67以及自建数据集上较传统手工特征方法的识别准确率提高了4个百分点以上。实验结果表明,所提算法能有效提升降落场景识别准确率。

基于低小慢无人机野外飞行自主降落识别方法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !