针对现有人脸年龄数据库样本数量少、各年龄段分布不均匀的问题,提出了一种基于分类与回归混合模型的人脸年龄估计方法。该方法主要包含两个方面:特征学习和估计模式。在特征学习方面,利用已有的深度卷积神经网络(CNN),先在粗糙年龄标注数据集上预训练,再在现有的精确年龄标注数据库上微调,分别得到一个年龄段判别模型和两个年龄估计模型;在估计模式方面,该方法采用由粗到细的策略:首先,将人脸分入青少年、中年、老年和两个重叠区域这五个年龄段;然后,对于青少年和老年采用分类模型估计,对于中年采用回归模型估计,对于重叠区域采用两个模型估计的均值。所提方法在测试集上的平均绝对误差( MAE)为2.56。实验结果表明该方法受不同肤色和性别的影响较小,有较低的误差。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !