针对不平衡分类中小类样本识别率低问题,提出一种基于主动学习不平衡多分类AdaBoost改进算法。首先,利用主动学习方法通过多次迭代抽样,选取少量的、对分类器最有价值的样本作为训练集;然后,基于不确定性动态间隔的样本选择策略,降低训练集的不平衡性;最后,利用代价敏感方法对多分类AdaBoost算法进行改进,对不同的类别给予不同的错分代价,调整样本权重更新速度,强迫弱分类器“关注”小类样本。在临床经胸超声心动图(TTE)测量数据集上的实验分析表明:与多分类支持向量机(SVM)相比,心脏病总体识别率提升了5.g%,G-mean指标提升了18. 2%,瓣膜病(VHD)识别率提升了0.8%,感染性心内膜炎(IE)(小类)识别率提升了12. 7%,冠心病(CAD)(小类)识别率提升了79. 73%;与SMOTE-Boost相比,总体识别率提升了6.ll%,G-mean指标提升了0.64%,VHD识别率提升了11. 07%,先心病(CHD)识别率提升了3.69%。在TTE数据集和4个UCI数据集上的实验结果表明,该算法在不平稳多分类时能有效提高小类样本识别率,并且保证其他类别识别率不会大幅度降低.综合提升分类器性能。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !